Elementary equivalence in positive logic via prime products SAMS 2023

T. Moraschini, K. Yamamoto and J.J. Wannenburg

Czech Academy of Sciences, Czechia

December 2023, Johannesburg

Lattices

A *lattice* is a partially ordered set (poset) in which any two elements x and y have

- ▶ a least upper bound, denoted x ∨ y
- ▶ a greatest lower bound, denoted $x \land y$.

It is distributive if it satisfies

wer bound, denoted
$$x \wedge y$$
.

f it satisfies $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z), \qquad x \wedge y$

 $x \vee y$

bounded if it has a maximum \top and minimum \bot element.

A Boolean algebra is a bounded distributive lattice in which every element x has a complement $\neg x$, i.e., an element for which

$$x \wedge \neg x = \bot$$
 and $x \vee \neg x = \top$.

Lattice filters

Let **A** be a lattice.

A non-empty subset F of A is a *filter* of A, when

- ▶ if $x \in F$ and $x \leq y$ then $y \in F$, and
- ▶ if $x, y \in F$ then $x \land y \in F$.

It is *proper* if $F \neq A$. A proper filter F is said to be *prime* when

▶ if $x \lor y \in F$ then $x \in F$ or $y \in F$.

A filter is an *ultrafilter* if it is maximal among proper filters.

If ${\bf A}$ is a distributive lattice, then its ultrafilters are prime filters.

The converse is true, when ${f A}$ is a Boolean algebra, in particular

$$x \in F$$
 or $\neg x \in F$, for all $x \in A$.

Recall that for any set I, its powerset $\mathcal{P}(I)$, when ordered by \subseteq , is a Boolean algebra where the complement of $X \subseteq I$ is $I \setminus X$.

Ultraproducts as direct limits

Given a family of structures $\{M_i : i \in I\}$, and ultrafilter \mathcal{U} of $\mathcal{P}(I)$.

- ▶ The poset $\langle \mathcal{U}, \supseteq \rangle$ is *directed* as \mathcal{U} is closed under intersections.
- \blacktriangleright We define a *directed system* indexed by $\langle \mathcal{U}, \supseteq \rangle$ with elements

$$\prod_{i\in X} M_i \text{ for every } X\in\mathcal{U},$$

and maps, whenever $Y \supseteq X$ in \mathcal{U} , the canonical projection

$$f_{Y,X}:\prod_{i\in Y}M_i\to\prod_{i\in X}M_i.$$

▶ The ultraproduct $\prod_{i \in I} M_i / \mathcal{U}$ is the direct limit of the system.

Why? Pick $a, b \in \prod_{i \in I} M_i / \mathcal{U}$,

$$a=b$$
 in the limit \iff $a{\upharpoonright}_V=b{\upharpoonright}_V$ for some $V\in U$ \iff $V\subseteq \{i\in I: a(i)=b(i)\}=$ $[\![a=b]\!]$ for some $V\in \mathcal{U}$ \iff $[\![a=b]\!]\in \mathcal{U}.$

Classic Results

For any first order formula $\varphi(x_1,\ldots,x_n)$ and $\mathbf{a}_1,\ldots,\mathbf{a}_n\in\prod_{i\in I}M_i$,

$$\llbracket \varphi(\mathbf{a}_1,\ldots,\mathbf{a}_n) \rrbracket = \{i \in I : M_i \models \varphi(\mathbf{a}_1(i),\ldots,\mathbf{a}_n(i))\}.$$

Łoś' Theorem

$$\prod_{i\in I} M_i/\mathcal{U} \models \varphi(\mathbf{a}_1/\mathcal{U},\ldots,\mathbf{a}_n/\mathcal{U}) \text{ iff } \llbracket \varphi(\mathbf{a}_1,\ldots,\mathbf{a}_n) \rrbracket \in \mathcal{U}.$$

If every $M_i = M$ for some structure M, then $\prod_{i \in I} M/\mathcal{U}$ is called an *ultrapower* of M, and M is an *ultrapove* of $\prod_{i \in I} M/\mathcal{U}$.

Thm

Let K be a class of structures. Then K is axiomatized by first order sentences (i.e., *elementary*) iff K is closed under ultraroots and ultraproducts.

Keisler-Shelah Theorem

Two structures satisfy the same first order sentences iff they have isomorphic ultrapowers.

Let $\mathbb{I} = \langle I; \leqslant \rangle$ be a poset and let

$$Up(I) = \{upwardly closed subsets of I\}.$$

Then Up(I) is a distributive lattice, ordered by inclusion.

Note that if \mathbb{I} is an anti-chain, then $Up(\mathbb{I}) = \mathcal{P}(I)$, in which case, any prime filter of $Up(\mathbb{I})$, would be an ultrafilter over I.

A well-ordered forest is a poset $\mathbb{I} = \langle I \rangle$ such that the downward closure of every element of I is well-ordered.

An ordered system is a family of structures $\{M_i: i \in \mathbb{I}\}$, indexed by a well-ordered forest \mathbb{I} such that whenever $i \leq j$ there is a homomorphism $h_{ij}: M_i \to M_j$, and

$$h_{ii} = id_{M_i}$$
 and $i \leqslant j \leqslant k$ implies $h_{jk} \circ h_{ij} = h_{ik}$.

Prime products

Given an ordered system $\{M_i : i \in \mathbb{I}\}$ and a prime filter \mathcal{F} of Up(\mathbb{I}).

We construct a directed system indexed by $\langle \mathcal{F}, \supseteq \rangle$, as before with canonical projections as maps on the objects:

For each $V \in \mathcal{F}$ let S_V be the substructure of $\prod_{i \in I} M_i$ on

$$\{\mathbf{a} \in \prod_{i \in V} M_i : h_{ij}(\mathbf{a}(i)) = \mathbf{a}(j) \text{ whenever } i \leqslant j \text{ in } V\}.$$

We define the *prime product* $\prod_{i\in\mathbb{I}} M_i/\mathcal{F}$ to be the direct limit of this system.

Note when the poset $\ensuremath{\mathbb{I}}$ is discreetly ordered, prime products coincide with ultraproducts.

Prime products

We can consider the universe of $\prod_{i\in\mathbb{I}}M_i/\mathcal{F}$ to be $S_{\mathcal{F}}=\bigcup_{V\in\mathcal{F}}S_V$. For each $a\in S_{\mathcal{F}}$

- we let V_a be the unique $V \in \mathcal{F}$ such that $a \in S_V$, and
- ▶ a/\mathcal{F} the incarnation of a in the direct limit $\prod_{i\in\mathbb{I}} M_i/\mathcal{F}$.

For every formula $\varphi(x_1,\ldots,x_n)$ and $a_1,\ldots a_n\in \mathcal{S}_{\mathcal{F}}$ let

$$\llbracket \varphi(a_1,\ldots,a_n) \rrbracket = \{i \in V_{a_1} \cap \cdots \cap V_{a_n} : M_i \models \varphi(a_1(i),\ldots,a_n(i)) \}.$$

Positive logic

Positive logic is concerned with formulas that are preserved by homomorphisms, i.e., built from atomic formulas using only

$$\exists$$
, \land , \lor , and \bot .

We call these *positive* (existential) formulas.

Positive Łoś' Theorem

For every *positive* formula $\varphi(x_1,\ldots,x_n)$ and $a_1,\ldots a_n\in \mathcal{S}_{\mathcal{F}}$,

$$\prod_{i\in\mathbb{I}} M_i/\mathcal{F} \models \varphi(\mathsf{a}_1/\mathcal{F},\ldots,\mathsf{a}_n/\mathcal{F}) \text{ iff } \llbracket \varphi(\mathsf{a}_1,\ldots,\mathsf{a}_n) \rrbracket \in \mathcal{F}.$$

Note, the assumption that \mathbb{I} is a well-ordered forest is crucial for the preservation of the existential quantifier \exists .

Prime products also preserve implications between positive formulas, i.e., *h-inductive* formulas that have the form

$$\forall \vec{x} (\varphi(\vec{x}) \rightarrow \psi(\vec{x})),$$

where φ and ψ are positive formulas.

Corollary

A class of structures can be axiomatized by h-inductive sentences iff it is closed under prime products and ultraroots.

A prime product $\prod_F M_i / \equiv_F$ is called a prime *power* of M when every $M_i = M$.

Positive Keisler-Shelah

Thm

- ▶ Under the GCH, two structures satisfy the same positive sentences iff they have isomorphic prime powers of ultrapowers.
- ▶ Without the GCH we can show: Two structures satisfy the same positive sentences iff they have isomorphic prime *products* of ultrapowers.

We can not remove the ultrapowers above. Consider $\mathbb Q$ in the language $\mathbb Q \cup \{\leq\}$, and $\mathbb Q^* = \mathbb Q \cup \{\infty\}$. Then $\mathbb Q$ and $\mathbb Q^*$ have the same positive theory, but one can show that prime powers preserve and reflect the existence of maxima.

Application

Thm (M. Raftery W., 2020, MLQ, Thm. 7.6)

Let K be a quasivariety of finite type, with a finite nontrivial member. Then the following conditions are equivalent.

- K is Passively Structurally Complete (PSC), i.e., every quasi-equation whose premises are not unifiable over K is valid in K.
- 2) The nontrivial members of K satisfy the same existential positive sentences.
- 3) The nontrivial members of K have a common retract.

Thm

A quasivariety K is PSC iff any two nontrivial members of K have isomorphic prime products of ultrapowers.

