Embedding Kozen-Tiuryn Logic into Residuated One-sorted Kleene Algebra With Tests¹

I. Sedlár and J.J. Wannenburg

Institute of Computer Science of the Czech Academy of Sciences

LOGICA September 2022

¹ This work was carried out within the project Supporting the internationalization of the Institute of Computer Science of the Czech Academy of Sciences (no. CZ.02.2.69/0.0/0.0/18.053/0017594), funded by the Operational Programme Research, Development and Education of the Ministry of Education, Youth and Sports of the Czech Republic. The project is co-funded by the EU.

Kleene algebra

Definition

A Kleene algebra [Koz94] is a structure $\mathscr{K}=(K,\vee,\cdot,\,^*,1,0)$ such that

- $lackbox{ } (K,ee,\cdot,1,0)$ is an *idempotent semiring*, i.e.,
 - \blacksquare $(K,\cdot,1)$ is a monoid,
 - $lackbox{ } (K,\lor,0)$ is an idempotent commutative monoid (hence, a join-semilattice),
 - $\mathbf{x}(y \lor z) = xy \lor xz, (y \lor z)x = yx \lor zx,$ and
 - x0 = 0 = 0x, and
- lacksquare *:K o K such that

$$1 \lor a \lor a^*a^* \le a^*$$
 $ax \le x \Rightarrow a^*x \le x$ $xa \le x \Rightarrow xa^* \le x$

 \mathscr{K} is *-continuous iff $ab^*c = \bigvee_{n>0} ab^nc$.

Example

The relational Kleene algebra over a set X is $\mathscr{R}(X) = (2^{X \times X}, \cup, \circ, ^*, \mathsf{id}, \emptyset)$;

- o denotes composition, and
- $\blacksquare R^* = \bigcup_{i>0} R^i$, where $R^0 = \text{id}$ and $R^{i+1} = R \circ R^i$.

Kleene algebra with tests

Definition

A Kleene algebra with tests [Koz97] is $\mathscr{B} = (K, B, \vee, \cdot, *, 1, 0, \bar{})$ where

- $\blacksquare \ (K,\vee,\cdot,^*,1,0)$ is a Kleene algebra
- $\blacksquare B \subseteq K$
- $(B, \vee, \cdot, \bar{}, 1, 0)$ is a Boolean algebra.

Prop. Every KA is a KAT, where the test subalgebra is $B=\{0,1\}$.

Example

The relational KAT over a set X is $\mathscr{R}(X)$ together with the Boolean test subalgebra 2^{id} .

Prop. [KS97] The equational theory of KAT is identical to the equational theory of rKAT.

Propositional while programs

$$\mathsf{Tests} \quad \beta := \mathsf{b} \mid \bar{\beta} \mid \beta \wedge \beta \mid \beta \vee \beta$$

$$\mathsf{Programs} \quad \pi := \mathsf{skip} \mid \mathsf{p} \mid \pi; \pi \mid \mathsf{if} \; \beta \; \mathsf{then} \; \pi \; \mathsf{else} \; \pi \mid \mathsf{while} \; \beta \; \mathsf{do} \; \pi$$

In KAT:

$$\begin{split} b \wedge c &:= bc \quad b \vee c := b \vee c \\ p; q &:= pq \\ \text{skip} &:= b \vee \bar{b} \end{split}$$
 if b then p else $q := (bp) \vee (\bar{b}q)$ while b do $p := (bp)^*\bar{b}$

Non-termination: p = 0

Partial correctness: $\{b\}p\{c\} \iff bp = bpc$

Kozen-Tiuryn Logic

In [KT03] Kozen and Tiuryn introduces a logic (see next 2 slides) which represents partial correctness by a formula, instead of an equation in KAT. They argue that this has certain advantages, e.g., it facilitates a better distinction between local and global properties.

Kozen-Tiuryn Logic

Definition

Let $B = \{b_i \mid i \in \omega\}$ be the set of test variables and let $P = \{p_i \mid i \in \omega\}$ be the set of program variables.

We define the following sorts of syntactic objects:

tests
$$b,c:=\mathsf{b}_i\mid 0\mid b\Rightarrow c$$
 programs
$$p,q:=\mathsf{p}_i\mid b\mid p\oplus q\mid p\otimes q\mid p^+$$
 formulas
$$f,g:=b\mid p\Rightarrow f$$
 environments
$$\Gamma,\Delta:=\epsilon\mid \Gamma,p\mid \Gamma,f$$
 sequents
$$\Gamma\vdash f$$

We define $1 := 0 \Rightarrow 0$, $\neg b := b \Rightarrow 0$ and $p^* := 1 \oplus p^+$.

The logic S is defined in [KT03] to be the set of sequents provable in the following proof system:

(Id)
$$b \vdash b$$

$$(\text{TC}) \ \frac{\Gamma, b, \Delta \vdash f \qquad \Gamma, \bar{b}, \Delta \vdash f}{\Gamma, \Delta \vdash f}$$

$$(\mathsf{R} \Rightarrow) \ \frac{\Gamma, p \vdash f}{\Gamma \vdash p \Rightarrow f}$$

$$(\mathsf{I} \otimes) \ \frac{\Gamma, p, q, \Delta \vdash f}{\Gamma, p \otimes q, \Delta \vdash f}$$

$$(\mathsf{I} \oplus) \ \frac{\Gamma, p, \Delta \vdash f \qquad \Gamma, q, \Delta \vdash f}{\Gamma, p \oplus q, \Delta \vdash f}$$

$$(\mathsf{I}^+) \ \frac{g, p \vdash f \qquad g, p \vdash g}{g, p^+ \vdash f}$$

$$(\mathsf{E}^+) \ \frac{\Gamma, p^+, \Delta \vdash f}{\Gamma, p, \Delta \vdash f}$$

$$(\mathsf{CC}^+) \ \frac{\Gamma, p^+, \Delta \vdash f}{\Gamma, p^+, p^+, \Delta \vdash f}$$

(I0)
$$\Gamma, 0, \Delta \vdash f$$

$$\text{(cut)} \ \frac{\Gamma \vdash g \quad \Gamma, g, \Delta \vdash f}{\Gamma, \Delta \vdash f}$$

$$(\mathsf{I} \Rightarrow) \ \frac{\Gamma, p, f, \Delta \vdash g}{\Gamma, p \Rightarrow f, p, \Delta \vdash g}$$

$$(\mathsf{E} \otimes) \ \frac{\Gamma, p \otimes q, \Delta \vdash f}{\Gamma, p, q, \Delta \vdash f}$$

$$(\mathsf{E} \oplus_1) \ \frac{\Gamma, p \oplus q, \Delta \vdash f}{\Gamma, p, \Delta \vdash f}$$

$$(\mathsf{E} \oplus_2) \ \frac{\Gamma, p \oplus q, \Delta \vdash f}{\Gamma, q, \Delta \vdash f}$$

$$(\mathsf{W}f) \ \frac{\Gamma, \Delta \vdash g}{\Gamma, f, \Delta \vdash g}$$

$$(\mathsf{W}p) \ \frac{\Gamma \vdash f}{p, \Gamma \vdash f}$$

Binary relation semantics

Definition

A Kozen–Tiuryn model is a pair M=(W,V), where W is a non-empty set and $V:\mathsf{B}\cup\mathsf{P}\to\mathscr{R}(W)$ such that $V(\mathsf{b})\subseteq\mathrm{id}_W$ for all $\mathsf{b}\in\mathsf{B}.$

We define the M-interpretation function $[\]_M:Ex_{\mathsf{S}}\to\mathscr{R}(W)$ as follows:

$$\qquad \qquad \textbf{[b]}_M = V(\textbf{b}), \quad \textbf{[p]}_M = V(\textbf{p}), \quad \textbf{[0]}_M = \emptyset$$

$$\blacksquare \hspace{0.2cm} \llbracket b \Rightarrow c \rrbracket_{M} = \{(s,s) \mid (s,s) \not \in \llbracket b \rrbracket_{M} \text{ or } (s,s) \in \llbracket c \rrbracket_{M} \}$$

$$\blacksquare [p \oplus q]_M = [p]_M \cup [q]_M$$

$$[p^+]_M = [p]_M^+$$

$$\bullet \quad [\epsilon]_M = \mathrm{id}_W$$

$$[\Gamma, \Delta]_M = [\Gamma]_M \circ [\Delta]_M$$

(Here ⁺ denotes transitive closure and o denotes relational composition.)

Definition

A sequent $\Gamma \vdash f$ is valid in M iff, for all $s,t \in W$, if $(s,t) \in [\Gamma]_M$, then $(t,t) \in [f]_M$.

Theorem 1

 $\Gamma \vdash f$ is provable in S iff $\Gamma \vdash f$ is valid in every Kozen–Tiuryn model.

- lacksquare Observe that $[f]_M\subseteq \mathrm{id}_W$ for all formulas f
- If $(s,s) \in [f]_M$, then we may say that formula f is true in s.
- Note that $[bp\Rightarrow c]_M$ is the set of (s,s) such that, for all t, if $(s,s)\in [b]_M$ and $(s,t)\in [p]_M$, then $(t,t)\in [c]_M$.
- Hence, $bp \Rightarrow c$ represents a partial correctness assertion: the formula is true in s iff b is true in s and p connects s with a state t only if c is true in t.

Questions

- How does S relate to mainstream substructural logic?
- Is there a one-sorted residuated structure into which we can interpret S?

Residuals

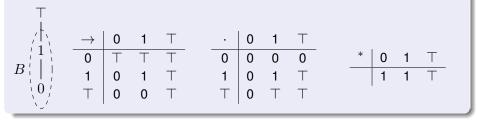
Definition

An idempotent semiring is residuated if it has two binary operation $\rightarrow, \hookrightarrow$ such that

$$xy \le z \iff x \le y \to z \iff y \le x \hookrightarrow z.$$
 (1)

Note. One can not translate $p \Rightarrow b$ to $p \rightarrow b$, since $0 \rightarrow 0$ is maximal.

Example



Let $R \subseteq S \times S$ and $B \subseteq id_S$.

$$R \to B = \{(s, u) \mid \forall v. (u, v) \in R \implies (s, v) \in B\}$$

$$R \Rightarrow B = \{(u, u) \mid \forall v. (u, v) \in R \implies (v, v) \in B\}$$

Now consider the operations $c,e:2^{S\times S}\to 2^{S\times S}$

$$c(R) = \{(u, u) \mid \exists s. (s, u) \in R\}$$
 (2)

$$e(R) = \{(s, u) \mid (u, u) \in R\}$$
(3)

Note that c and e form a *Galois connection* in the sense that,

$$c(R) \subseteq Q \iff R \subseteq e(Q)$$
. (4)

Proposition 1

$$c(R \to e(B)) = R \Rightarrow B \tag{5}$$

Kleene algebra with codomain

The following one-sorted alternative to KAT is presented in [DS11].

Definition

A Kleene algebra with (anti)codomain is $\mathscr{A}=(K,\vee,\cdot,^*,1,0,a)$ where $a:K\to K$ such that

$$xa(x) = 0$$

$$a(xy) = a(a^{2}(x)y)$$

$$a^{2}(x) \lor a(x) = 1$$

A codomain operation is then defined by $c(x) := a^2(x)$.

Prop. $(c(K), \vee, \cdot, 1, 0)$ is a Boolean algebra where a(x) is the complement of $x \in c(K)$.

Thm. The equational theory of KAT embeds into that of KAC.

Relational KAC

Example

Extend a relational Kleene algebra with

$$a(R) = \{(s, s) \mid \neg \exists t . (t, s) \in R\}.$$

Thus creating a relational KAC.

The codomain operation a(a(R)) = c(R), is then as expected

$$c(R) = \{(s, s) \mid \exists t . (t, s) \in R\}.$$

Residuated program algebras

Definition

An SKAT $\mathscr{P}=(K,\vee,\cdot,\rightarrow,\hookrightarrow {}^*,a,e,1,0)$ comprises

- a residuated Kleene algebra $(K, \lor, \cdot, \hookrightarrow, \rightarrow, *, 1, 0)$,
- **a** Kleene algebra with codomain $(K, \vee, \cdot, *, a, 1, 0)$, and
- lacksquare a unary operation e on K that satisfies the following:

$$a(a(e(x))) \le x \tag{6}$$

$$x \le e(a(a(x))) \tag{7}$$

$$e(x) \le e(x \lor y) \tag{8}$$

We define c(x) := a(a(x)). An SKAT is *-continuous (denoted SKAT*) iff its underlying Kleene algebra is *-continuous.

Prop.: The class of all SKATs is a variety.

Embedding result

Let Tm be the absolutely free SKAT-type algebra over $\{x_1, x_2, \dots\}$.

Definition

We define $Tr: Ex_S \to Tm$ as follows:

$$Tr(p_n) = x_{2n}, \quad Tr(b_n) = c(x_{2n+1}), \quad Tr(0) = c(0), \quad Tr(\epsilon) = 1$$

$$\blacksquare \ Tr(b \Rightarrow c) = c(Tr(b) \rightarrow e(Tr(c)))$$

$$\blacksquare Tr(p \oplus q) = Tr(p) \vee Tr(q)$$

$$Tr(p \otimes q) = Tr(p) \cdot Tr(q)$$

$$Tr(p^+) = Tr(p) \cdot Tr(p)^*$$

$$Tr(p \Rightarrow f) = c(Tr(p) \to e(Tr(f)))$$

$$Tr(\Gamma, \Delta) = Tr(\Gamma) \cdot Tr(\Delta)$$

Theorem 2

A sequent $\Gamma \vdash f$ is provable in S iff $c\big(Tr(\Gamma)\big) \leq Tr(f)$ belongs to the equational theory of *-continuous SKAT.

References I

Jules Desharnais and Georg Struth.

Internal axioms for domain semirings.

Science of Computer Programming, 76(3):181-203, March 2011.

D. Kozen.

A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events.

Information and Computation, 110(2):366-390, May 1994.

Dexter Kozen.

Kleene algebra with tests.

ACM Transactions on Programming Languages and Systems, 19(3):427-443, May 1997.

Dexter Kozen and Frederick Smith.

Kleene algebra with tests: Completeness and decidability.

In Gerhard Goos, Juris Hartmanis, Jan Leeuwen, Dirk Dalen, and Marc Bezem, editors, *Computer Science Logic*, volume 1258, pages 244–259. Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.

Dexter Kozen and Jerzy Tiuryn.

Substructural logic and partial correctness.

ACM Transactions on Computational Logic, 4(3):355-378, July 2003.