This presentation uses javascript. Please enable it or switch to a browser that uses it.

On the algebra of relevance logics

Jamie Wannenburg, J. G. Raftery & T. Moraschini

May 2017

An algebra $\mathbf{A} = \langle A; \vee, \wedge, \bdot, \neg, e \rangle$ is a De Morgan monoid whenever

A lattice is a set with a partial order, $\leq$, such that all elements $x$ and $y$ have

  • a least upper bound, called their join
  • a greatest lower bound, called their meet

Notice that $x \leq y$ iff $x \vee y = y$
(i.e., $x \wedge y = x$)

It is distributive if $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$

$x$ $y$ $x \vee y$ $x \wedge y$

$\langle A; \bdot, e \rangle$ is a commutative monoid if

We define $y \to z = \neg(y \bdot \neg z)$. Then the 'Law of residuation' holds $$ x \bdot y \leq z \;\text{ iff }\; x \leq y \to z $$

For example, consider the set of positive integers :

  • ordered by divisibility
  • $\bdot$ is ordinary multiplication

What is $2 \to 6$?

4 9 6 2 3 1 $\bot$

Universal Algebra

A variety $\mathsf{V}$ is a class of algebras that is axiomatised by equations, or equivalently, $\mathbb{HSP}(\mathsf{V})=\mathsf{V}$.

We define $\mathbb{V}(\mathbf{A}) = \mathbb{HSP}(\mathbf{A})$.

The class of all De Morgan monoids, $\mathsf{DMM}$, is a variety.

A subvariety of $\mathsf{V}$ is a subclass of $\mathsf{V}$ that is itself a variety.

The subvarieties of $\mathsf{V}$ form a lattice.

$\mathsf{DMM}$ trivial $L_\mathbb{V}(\mathsf{DMM})$ More equations More algebras

Logic

A logic $\mathbf{L}$ is a set of 'rules' which satisfy certain conditions. A rule is a pair $\Gamma / \alpha$ where $\alpha$ and the elements of $\Gamma$ are terms.

When $\Gamma / \alpha$ belongs to $\mathbf{L}$ we write $$ \Gamma \,\vdash_{\mathbf{L}} \alpha, $$ and we say $\Gamma / \alpha$ is derivable in $\mathbf{L}$.

For axioms and theorems $\Gamma = \emptyset$.

We define the logic $\mathbf{R^t}$ as follows, $$ \gamma_1, \dots, \gamma_n \vdash_{\mathbf{R^t}} \alpha $$ $$ \text{iff} $$ $$\mathsf{DMM} \models (e \leq \gamma_1 \;\&\; \dots \;\&\; e \leq \gamma_n) \Rightarrow e \leq \alpha.$$

Examples

$$\vdash_{\mathbf{R^t}} x \to x $$ $\mathsf{DMM} \vDash e \bdot x = x$, in particular $\mathsf{DMM} \vDash e \bdot x \leq x$. So by the law of residuation $\mathsf{DMM} \vDash e \leq x \to x$.

$$ x, x \to y\vdash_{\mathbf{R^t}} y $$ Suppose that $e \leq x$ and $e \leq x \to y$. By the law of residuation $e \bdot x \leq y$, i.e. $x \leq y$. Therefore $\mathsf{DMM} \vDash (e \leq x \,\&\, e \leq x \to y) \implies e \leq y,$ by transitivity of $\leq$.

AAL

An (axiomatic) extension of a logic $\mathbf{L}$ is a logic obtained by adding new axioms to $\mathbf{L}$.

The axiomatic extensions of a logic form a lattice, ordered by inclusion.

$\mathsf{R^t}$ inconsistent More theorems

Motivation

$p \to (q \to p)$ (weakening) is not a theorem of $\mathbf{R^t}$.

Slaney (1985) showed that there is no infinite 0-generated De Morgan monoid. However there are infinite 0-generated algebras if we drop either distributivity or the square-increasing law.

Urquhart (1984) showed that the equational theory of $\mathsf{DMM}$ is undecidable. However if we drop either distributivity or the square-increasing law, the corresponding theories become decidable.

The algebra of relevance logic is also relatively unexplored.

Sugihara monoids

Sugihara monoids are idempotent
($x \bdot x = x$) De Morgan monoids

Let $\mathbf{A}$ be a De Morgan monoid. TFAE:

  • $\mathbf{A}$ is a Sugihara monoid
  • $\neg e = f \leq e$
  • $f = f^2$
$\mathsf{S_3}:$ $e=f$ $a$ $\neg a$ $\mathsf{SM}$ trivial $L_\mathbb{V}(\mathsf{SM})$ $\mathbb{V}(\mathsf{2})$ $\mathbb{V}(\mathsf{S_3})$

Simple 0-generated De Morgan monoids

A De Morgan monoid is simple if $e$ has exactly one strict lower bound.

An algebra is 0-generated if it has no proper subalgebra.

Let $\mathbf{A}$ be such a De Morgan monoid. Let $f = \neg e$.

simplesubdirectly irreducible (SI)finitely subdirectly irreducible (FSI)
In congruence lattice
In De Morgan monoids $e$ $e$ $e$

If $\mathsf{K}=\mathbb{V}(\mathbf{A})$ is congruence distributive, then the SI members of $\mathsf{K}$ belong to $\mathbb{HSP_u}(\mathbf{A})$.

If $f < e$, then $f$ is the bottom element of $\mathbf{A}$, by simplicity. Then $\mathbf{A} \cong \mathbf{2}$.

If $e = f$ then $\{e\}$ is a subalgebra, a contradiction.

If $e < f$, then $\mathbf{A} \cong \mathbf{C_4}$.

If $f$ is incomparable with $e$, then $e \wedge f = \neg(f^2)$, so that $\mathbf{A} \cong \mathbf{D_4}$.

What about $\bdot$ ?

$\mathbf{2}:$ $e$ $f$ trivial: $e = f$ $\mathbf{C_4}:$ $f^2$ $f$ $e$ $\neg(f^2)$ $\mathbf{D_4}:$ $f^2$ $f$ $e$ $\neg(f^2)$
$\mathbb{V}(\mathbf{2})$ $\mathbb{V}(\mathbf{D_4})$ $\mathbb{V}(\mathbf{S_3})$ $\mathbb{V}(\mathbf{C_4})$

Relevant algebras: $ \mathsf{RA} = $ $$\{ \text{Subalgebras of } \langle A; \vee, \wedge, \bdot,\neg \rangle \text{ where } \mathbf{A} \in \mathsf{DMM} \}. $$

Relevance logic: $\mathbf{R}$ is the set of rules of $\mathbf{R^t}$ that do not involve $t$.

$\mathsf{RA}$ algebraizes $\mathbf{R}$ just as $\mathbf{DMM}$ algebraizes $\mathbf{R^t}$, except we replace every $e \leq \alpha$ with $\alpha \to \alpha \leq \alpha$, to which it is equivalent in $\mathsf{DMM}$.

$\mathsf{RA}$ trivial $L_\mathbb{V}(\mathsf{RA})$
$\mathsf{R}$ inconsistent
$\mathbb{V}(\mathbf{2})$

Covers of $\mathbb{V}(\mathbf{2})$

Finitely generated relevant algebras are reducts of De Morgan monoids.

Slaney: Every homomorphism from an FSI De Morgan monoids into a 0-generated De Morgan monoid is an isomorphism or maps onto $\mathbf{C_4}$.

Let $\mathsf{K}$ be a cover of $\mathbb{V}(\mathbf{2})$ in $L_{\mathbb{V}}(\mathsf{RA})$. We show that $\mathsf{K}$ is one of $\mathbb{V}(\mathbf{C_4})$, $\mathbb{V}(\mathbf{D_4})$ or $\mathbb{V}(\mathbf{S_3})$.

Notice that $\mathsf{K} = \mathbb{V}(\mathbf{A})$ for any non-Boolean $\mathbf{A} \in \mathsf{K}$.

There exists a non-Boolean finitely generated SI $\mathbf{A} \in \mathsf{K}$ such that $\mathbb{V}(\mathbf{A}) = \mathsf{K}$. Then $\mathbf{A}$ is a reduct of some f. g. SI $\mathbf{A^+} \in \mathsf{DMM}$.

By the result above, one of $\mathbf{C_4}$, $\mathbf{D_4}$, $\mathbf{S_3}$ or $\mathbf{2}$ belongs to $\mathbb{V}(\mathbf{A^+})$. Except for the case where only $\mathbf{2} \in \mathbb{V}(\mathbf{A^+})$ we are done, since the reducts of members of $\mathbb{V}(\mathbf{A^+})$ belong to $\mathbb{V}(\mathbf{A})$.

Suppose $\mathbf{2} \in \mathbb{V}(\mathbf{A^+})$, then $\mathbf{2} \in \mathbb{HSP_u}(\mathbf{A^+})$, i.e., there exists a De Morgan monoid $\mathbf{B}$ that has $\mathbf{2}$ as a homomorphic image and can be embedded into an ultrapower of $\mathbf{A^+}$. In particular $\mathbf{B}$ is FSI. So, by the theorem above, $\mathbf{B} \cong \mathbf{2}$. But then $\mathbf{2} \in \mathbb{SP_u}(\mathbf{A^+})$. In particular, this means that $\mathbf{A^+}$ is a non-Boolean Sugihara monoid. This implies that $\mathbf{S_3} \in \mathbb{V}(\mathbf{A^+})$.

$\mathbb{V}(\mathbf{D_4})$ $\mathbb{V}(\mathbf{C_4})$ $\mathbb{V}(\mathbf{S_3})$

Further implications and current work

Raftery and Świrydowicz (2016) used the structure of the bottom part of $L_\mathbb{V}(\mathsf{RA})$ to determine the 'structurally complete' subvarieties of $L_\mathbb{V}(\mathsf{RA})$.

We are currently working on finding the structurally complete members of $L_\mathbb{V}(\mathsf{DMM})$, as well as finding the covers of the atoms.

Thank you